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Capacitance Computation of Elliptic Microstrip
Disks in Biaxial Anisotropic

Multilayered Substrates

RAFAEL R. BOIX AND MANUEL HORNO, MEMBER, IEEE

A/Awmcf —Variational technique in the spectral domaiu are used to

develop an afgoritfnn which calculates a lower bound of the capacitance of

a conductor elliptic disk embedded in a Iossless multilayered substrate with

arbitrary dielectric anisotropy. This sdgoritbm is intended to be a useful

tool for lumped element design in MMIC applications. Tbe calculation

method is shown to be general, quick, and accurate when implemented in a

computer program. Numerical results are given to demonstrate the effi-

ciency of the algorithm.

I. INTRODUCTION

L UMPED ELEMENT circuits offer an attractive alter-

native to distributed circuits in MMIC’S. Lumped

elements are of relatively small size and thanks to this,

they make it possible to reduce the semiconductor area

wasted in passive circuits. For design purposes, it is neces-

sary to develop computer programs to characterize such

type of elements [1].

Microstrip patches with an arbitrary shape are com-

monly used as lumped elements. Many papers have been

published dealing with the calculation of the capacitance

of such patches. Special attention has been paid to the

analysis of the circular patch. A complete bibliographical

report on the calculation of the capacitance of a circular

conductor plate in homogeneous and inhomogeneous me-

dia can be found in [2]. A modified version of the circular

patch is the elliptic patch. It appears that very little work

has been done on the determination of the capacitance of

elliptic microstrip patches including fringing field effects.

Besides, the only capacitance data for elliptic patches we

have been able to find are not very reliable [3]. This will be

proved in this paper.

The capacitance values of elliptic microstrip patches can

be used in the analysis of elliptic microstrip resonators to

account for fringe effects. By means of these capacitance
values, it is possible to derive effective dimensions and

effective permittivities, which can be included in a modi-

fied cavity model to obtain the resonance frequencies [3],

[4]. This model is much less time-consuming in a computer

than a full-wave analysis [5]. The elliptic resonator pre-
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sents some advantages over the simpler circular resonator.

For instance, it can be used in the design of parametric

amplifiers and harmonic multipliers by varying the eccen-

tricity as a degree of freedom [6]. Also, no mode splitting

due to slight deformations occurs in the elliptic resonator

and the field configuration is fixed with respect to the

axes [3].

The modified cavity model can also be used to analyze

elliptical microstrip antennas. Circular and rectangular

microstrip antennas can be adapted to provide circular

polarization, but multiple feeds are needed. However, by

using a slightly elliptical radiator, it is possible to obtain

circular polarization while retaining a simple feed. This

fact has been proved by means of analytical work [7] and

experimental measurements [8].

All the results reported on the calculation of the capaci-

tance of circular and elliptic microstrip disks deal with the

conventional microstrip configuration in which the con-

ductor plate is printed on a single isotropic dielectric [2],

[3]. In this paper, we provide an algorithm to determine

the capacitance of an elliptic conductor plate embedded in

a multilayered anisotropic substrate. Multilayered analysis

allows the study of configurations in which several dielec-

tric layers are involved (e.g., suspended, inverted, and

sandwiched configurations) and it also allows the simula-

tion of dielectrics with a continuous permittivity variation

in one direction. The effect of anisotropy is also taken into

account because a variety of practical substrates are

anisotropic and serious errors may be incurred when

anisotropy is neglected [9]. Variational techniques in the

spectral domain are employed in an adequate way to

compute the value of the capacitance of the elliptic plate.

Once implemented in a computer program, the algorithm

developed turns out to be general, accurate, and quick.

II. VARIATIONAL FORMULATION FOR THE

CAPACITANCE OF THE ELLIPTIC DISK

In Fig. l(a), we have drawn the cross section of a

stratified medium composed of IV layers of Iossless

anisotropic dielectric materials. An infinitely thin and loss-

less elliptic conductor plate lies between the Alth and

(M+ l)th dielectric layers. The dimensions of the ellipse

and its orientation referred to the coordinate system cho-
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Fig. 1. (a) Multilayered substrate with biaxial dielectric anisotropy.

(b) Elliptic conductor patch placed at the Mthinterfaceof the multi-
layered substrate shown in (a).

sen are given in Fig. l(b). The eccentricity of the ellipse is

given by

‘= (’-(v42)”2- (1)

Dielectric materials in the multilayered configuration

are allowed to present biaxial anisotropy, and their permit-

tivity tensors can be expressed as

The six independent parameters of the perrnittivity ten-

sor can be expressed in terms of its eigenvalues c; i, e;,,,

and ~~, and the Euler angles o,, f3,, and 41, which describe

the position of the tensor principal axes referred to the

Cartesian coordinate axes shown in Fig. l(a) and (b) [10].

Boundary interfaces i = O and i = N are independently
allowed to be any one of three different possibilities:

electric walls, magnetic walls, or open boundaries extend-

ing to infinity.

When a two-dimensional Fourier transform is carried

out from the spatial variables X– Z to the spectral vari-

ables a –/3, the electric energy associated with the structure

shown in IFig. l(a) can be expressed as [10]

In the above expression, ~(a, ~) stands for the two-dimen-

sional Fourier transform of the charge density on the

elliptic conductor plate and G( a, ~ ) is the spectral Green’s

function. For a multilayered dielectric substrate with biax-

ial anisotropy, the value of G( a, /3) is obtained by means

of a recurrent algorithm proposed in [10]. The spectral

Green’s function dependence on the Fourier variables a

and ~ is expressed in terms of hyperbolic functions as is

written below:

G(rx, /3)== G(~(a, /3)coth(H,~(a, ~)), ~(a, ~)

.cosch(hrl~(a, ~))) (in general, i= O,. . . . N+l)

(4a)

where

Fz(a, B) ‘= (1/q2,1) [(~;2, zqt,z -(q2,1)2)a’

‘( ’12,tc%,z -(e13,i)2)P2

‘2(@3,#;2,i - C~,,Cy3,)aB]”2. (4b)

Owing to Thomson’s theorem, the right-hand side of (3)

provides an upper bound for the electric energy if an

approxima~ted expression is used for the transformed charge

density F(CU ~) on the elliptic plate. This means that the

charge density needs to be previously estimated in the

spatial domain to obtain a stationary value of U.

At this point, it is necessary to choose an adequate

coordinate system to express the charge density on the

plate. Considering the geometry of the problem, the natu-

ral coordinates to be used are the orthogonal elliptic

coordinates (~, q, y) defined in [11]. In general, for an

elliptic plate embedded in an arbitrary multilayered

anisotropic substrate, the charge density depends on both

variables $ and q. When the dielectrics present uniaxial

anisotropy and their optical axis are aligned with the Y

axis defmcd in Fig. l(a) (i.e., cl;, i = ~~~,~ and cl;, ~= cl:, ~=

c~~,i = O), the electrostatic potential for the problem and

the charge density on the plate no longer depend on the q

variable. Nevertheless, the use of the variables ~ and q to

approximate the charge density is unsuitable when a trans-

formation to the two-dimensional Fourier space is at-

tempted to obtain F( a, ~ ). To avoid this, adifferent choice

for the coordinate system has been made. The coordinates

employed are related to the natural coordinates used in the

problem of the circular plate (limiting case of an elliptic

plate with vanishing eccentricity), which are cylindrical

coordinates (r, ~, y) [12]. By analogy with cylindrical coor-

dinates (r-, +, y), we define the coordinate system (r’, +’, y)

for the more general problem of the elliptic plate with
nonvanishing eccentricity as

x = r’cos~’

z = (b/a) r’sin@’. (5)

The points on the elliptic plate are obtained by varying

the coordinates defined in (5) through the range O < r’< a,
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0 <+’< 27r, y = X,K ~H,. This coordinate system is not

orthogonal unless b = a, and in this latter case, it repre-

sents the cylindrical coordinate system. In our analysis, we

use the coordinates defined in (5) and we assume that the

charge density on the elliptic plate depends only on r’. As

will be seen below, this choice makes it possible to obtain

the two-dimensional Fourier transform of the charge den-

sit y in a way which is suitable for calculating the electric

energy via expression (3). The assumption p = p (r’) is only

true for the case of a circular plate embedded in a multi-

layered anisotropic substrate with circular symmetry; i.e.,

dielectrics must have uniaxial anisotropy and the opticaJ

axes must be aligned and perpendicular to the interfaces.

For the more general case of an elliptic plate embedded in

an arbitrary anisotropic substrate, the assumption is not

valid since the charge density on the plate also depends on

the +’ coordinate. However, the effects of complex

anisotropy and nonvanishing eccentricity can be regarded

as perturbations of the simple case of a circular plate on

an aligned uniaxial substrate. Considering this, the men-

tioned assumption can be interpreted as a first-order ap-

proximation for the real charge density. The smaller the

eccentricity and the weaker the anisotropy, the better the

approximation will be. Also, it should be taken into ac-

count that if some error is made in the approximation of

the charge density, this error is reduced when the electric

energy of the structure is calculated, owing to the varia-

tional features of expression (3).

Besides the spatial coordinate transformation proposed

in (5), we also substitute the variables a and ~ in the

two-dimensional transformed space by a pair of new vari-

ables, y and 0, given by

a=ycosfl

~=(a/b)ysinLl. (6)

When the variable transformations shown in (5) and (6)

are introduced in the definition of the two-dimensional

Fourier transform of the charge density on the elliptic

plate, this can be written as

F(Y) = ~JaJo(y~’)P(~’)r’~r’.
o

(7)

As a result of the assumption p = p(r’), the charge

density transform depends only on the y variable in the

transformed space. It can be noticed that the integral

appearing in (7) stands for the zeroth-order Hankel trans-
form of the function p( r’) [12]. When the new variables

defined in (6) are introduced in (3), the electric energy can

be rewritten as

In this expression ~(y) is a real quantity owing to the

definition given in (7). The spectral Green’s function gen-

erally depends on the variables y and !J, as can be derived

when (6) is introduced in (4b). When the problem to be

solved presents circular symmetry, the spectral Green’s

fiinction no longer depends on Sl and only a single integral

has to be carried out in (8).

The charge density approximation on the plate is opti-

mized by using trial function expansions. Therefore, the

charge density can be written as

p(r’)= fi alp, (r’). (9)

When (9) is introduced in (7) and the result is substi-

tuted in (8), the energy turns out to be a function of the

unknown coefficients u,. These coefficients are obtained

by minimizing the electric energy, being the total charge

conditioned to be a constant on the plate. This constant is

chosen to be equal to 1 without loss of generality. To solve

the isoperimetric problem that arises, Lagrange’s multipli-

ers method is applied. As a result of these calculations, a

set of linear equations is obtained:

fi d,,+ AQ, = O1
~=o

I (j=o,..., p) (lo)

~ CZZQZ =1
i=o )

in which the coefficients rij are given by

(i, j=o,..., p). (11)

The coefficients Q, = ~1(y = O) stand for the contribution

of each trial function to the total charge on the plate and

the unknown “A” is the Lagrange’s multiplier. By using

the system of equations (10), the electric energy can be

rewritten in a very simple way, namely,

Since the total charge on the plate is taken to be equal to

1, the capacitance will be given by C = l/2U. Therefore,

the charge density approximation on the plate provides an

upper bound for the exact value of the electric energy, and

it also provides a lower bound for the exact value of the

capacitance. The use of Lagrange’s multipliers method

ensures the calculation of a lower bound for the capaci-

tance. This point is not considered by Leong et al. in their

analysis [13], and although the method employed by them
is variational, no lower bound for the capacitance is ob-

tained (see Maxwell’s distribution results in [13, table 1].

III. TRIAL FUNCTIONS FOR THE CHARGE DENSITY

Option 1

As a first approximation, a uniform charge distribution

is assumed on the elliptic plate, namely

r’<a
r’>a.

(13)

This approximation was the one employed by Sharma

et al. in [3]. In fact, when the charge distribution shown in

(13) is introduced in our formulation, the capacitance
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TABLE I
NORMALIZED CAPACITANCE CH\rrcnc.a2 OF MICROSTRIP CIRCULAR I>ISK AS A FUNCTION OF THE RATIO DISK

RADIUS/WJB;TRATE THICKNESS (a/H) FOR C, = 1 AND C, = 2.65

Normal {zeal capac! tdnCe CH/(rTC 6 * )

r o

a/H Ref. [16] Vart at tonal I Ref. [16] Varl at Ionai Number of

Ref. Th I s I Ref. Ttl Is Trial

[13: met hod [i31 nwthod Funct I ons

II
f .1

II

6 ❑2.65
r r II

0.1 ---- 26.3006 26. 3C06 ---- ‘I8.231O i8.23i0 2

0.2 ---- 13.5920 13.5920 ---- 9.4866 9.4866 2

1.0 3.5346 3.5345 3.5346 2,6122 2.6121 2.6122 3

2.0 2.3183 2.3179 2.3!83 1.8100 1.8094 1.8100 3

10.0 {.3180 1.3!55 1.3180 1.1809 1,1780 1. {809 4

20.0 t , 1756 ---- 1.1756 1.0969 ---- 1.0969 4

100.0 t .0421 ---- 1,0440 1,0210 ---- 1.0228 6

33

The results are compared with those provided in [13] and [16]. Option 2 is used for the calculation of the

capacitance. The number of triaf functions used to ensure convergence in each case is given.

expression obtained for an elliptic patch on a single

isotropic substrate is mathematically equivalent to that

reported in [3]; therefore, it should yield the same results.

For the case of the circular microstrip patch, it has been

reported that the constant charge density approximation

provides reliable results only for high values of the ratio

disk radius/substrate thickness [13], [14]. For practical

values of this ratio, the range of error produced by this

approximation varies between 4 and 8 percent [13]. By

analogy, the range of error arising in the case of an elliptic

patch must be similar. This will be ascertained in the

results section. When (7) is applied, the transform of the

function appearing in (13) turns out to be

Jl(ya)
p(y) =2nb—

Y“
(14)

This result allows us to recognize the infinite series

appearing in [3, eq. (13)] and evaluate those series by using

the simple numerical expressions given in [15] for Bessel

functions.

Option 2

In this case, we employ an expansion of the form

Tz, (r’/a )
p(r’) = ~ ai

,~o (1-(r’/a)2)”2
(15)

where Tz,(x ) are Chebyshev polynomials of the first kind.
As can be seen, each term in the expansion accounts for

the charge density singularity at the edge. This sort of trial

functions has been successfully employed in the analysis of

microstrip rectangular patches [10]. The first te~m in the

expansion represents Maxwell’s charge distribution, which

has also been used in the calculation of the capacitance of

a circular microstrip plate [12] –[14]. In that case, Maxwell’s

distribution is reported to provide accurate results for

small values of the disk radius/substrate thickness ratio. It

will be seen below that for larger values of this ratio,

higher order terms in the expansion given in (15) make it

possible to spread the validity range of the one term

approximation. In fact, a small number of trial functions

in (15) yield accurate results for our purposes in the range

of practical dimensions for both circular and elliptic

patches. The transform of the functions appearing in (15)

is given by

7:[J(-1/’)(:)J-(i-l/’)(F,(Y) =-
‘J(+l/’)(f)J-(+l/2)(f)l ‘i=oo””>p)-’16)
Bessel functions of integer order plus one half appear in

(16). Functions of this type are expressed in terms of

simple trigonometric functions that are quickly computed.

The numerical evaluation of the integrals appearing in (11)

for the trial functions chosen in options 1 and 2 has been

accelerated by means of an analytical treatment. This is

explained in detail in the Appendix.
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Fig. 2. Normalized capacitance of a rnicrostrip elliptic disk as a func-

tion of eccentricity for different values of the major axis/substrate
thickness (a/H ) ratio and for different permittivities. Solid lines are
used for option 2 results and dashed lines are used for option 1. The
asterisks correspond to the results given in [3, fig. 8].

IV. llESULTS

Two programs were implemented for the calculation of

the capacitance of circular and elliptic plates in multilay-

ered and anisotropic substrates. One of them works on

structures showing circular symmetry, in which numerical

integrals with respect to the O variable in (11) do not have

to be performed. The other program can treat nonsymmet-

rical structures involving elliptic plates on arbitrary

anisotropic substrates.

The accuracy of the algorithm was first checked by

comparing our results with very exact existing data for the

capacitance of circular microstrip disks in vacuum and

circular disks printed on a single dielectric slab [13], [16].

Values are presented in Table I for a wide range of

variation of the disk radius/substrate thickness ratio. It

can be seen that as this ratio increases, the number of trial

functions required in option 2 to obtain a precise result

also increases. For large values of the ratio mentioned, the

variational algorithm presented in [13] does not seem to be

as accurate as the one presented here.

In Fig. 2, the normalized capacitance of an elliptic

microstrip disk is plotted versus eccentricity. The results

obtained with the two options given in Section III for the

charge density approximation are shown. It is clear from

the figure that the capacitance values calculated with op-

tion 2 enhance considerably those obtained with option 1.

The difference between the data corresponding to each

option varies between 4 and 9 percent. This difference

becomes higher as both the plate surface/substrate thick-

ness ratio and the substrate perrnittivity decrease. The

asterisks in Fig. 2 stand for the results obtained in [3, Fig.

o
10 t ------

a/H1=O.l tr=l. -----
-----.--

---

a/H1=oJ @:~-----:_,--:_’::-----------------------

,.-
...’.

-_>- L------------------------

..-
a/H1=l. $=9,6

I

-0.1
I I

1 10

HJ4
Fig. 3. Capacitance of an elliptic microstrip disk with shielding upper

ground plane (normalized to the capacitance obtained by ignoring the
fringing fields) as a function of the relative position of the plane, Solid
lines stand for zero eccentricity and dashed lines stand for nonzero

eccentricity (b/a = 0.3).

8] by Sharma et al. As was stated in Section III, these

authors employ a uniform charge density distribution

function on the elliptic plate in their formulation; there-

fore, their results should coincide with those presented

here for option 1. However, serious discrepancies are no-

ticed. To check the validity of both groups of results, a

comparison was made with the results reported in [12] and

[13] in the limit of vanishing eccentricity, keeping the

assumption of constant charge distribution on the plates.

We found that our results agree closely with the mentioned

data, whereas Sharma’s results provide errors ranging from

5 to 25 percent, which increase as the major axis/substrate

thickness ratio increases. Looking at Fig. 2, these error

percentages seem to remain for nonvanishing eccentrici-

ties. The formulation presented in [3] is similar to that

presented here for option 1, but the numerical treatment is

much more cumbersome, since it requires carrying out two

iterated integrals over an infinite interval, and the function

to be integrated is calculated by evaluating a slowly con-
vergent series. Owing to this, we think that serious numeri-

cal errors were made to generate the results given in [3],

and these results should not be considered to be reliable.

In Fig. 3, the effect of the shielding upper ground plane

on the capacitance of microstrip circular and elliptic disks

is analyzed. As can be seen, this effect is stronger as the

ratio plate surface/substrate thickness decreases and as

the substrate permittivity decreases.

In Fig. 4, even- and odd-mode capacitances of broadside

coupled microstrip circular and elliptic disks on anisotropic

substrates are plotted as a function of the distance between

the conductor plates. From the figure, it can be derived
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Fig. 4. Modal capacitances of broadside coupled elliptic and circular

microstrip disks versus the relative thickness of the substrate ( a /c = 0.1
is used in all the graphs). Solid lines stand for circular disks on

sapphire substrate (cA = C?3= 9.4; @2 = 11.6; t~2 = c~q = Cfg = O).

Dashed lines stand for elliptic disks on P.B.N. substrate (cfi = C;3 =

5.12; @2 = 3.4; CA= CA = Cjq = O).

that for a given distance between plates, the coupling is

higher for a higher plate surface and for higher substrate

perrnittivity.

In Fig. 5, the effect of biaxial anisotropy on the capaci-

tance of an elliptic rnicrostrip patch is studied. Normalized

capacitance is plotted versus the angles between the princi-

pal axes of the permittivity tensor and the coordinate axes.

The principal axes of the permittivity tensor are separately

allowed to be tilted in the three coordinate plates, this tilt

being expressed in terms of Euler’s angles. The effect of

tilting is very slight in the X– Z plane since anisotropic

PTFE presents little anisotropy in this plane. However, it

is important in the X– Y and Y– Z planes, in which the

normalized capacitance changes about 20 percent when the

tilting angle varies from O to fir/2.

In Fig. 6 is shown the normalized capacitance of an

elliptic microstrip disk printed on an inhomogeneous di-

electric with a varying permittivit y in the Y direction as a

function of the value of the perrnittivity at the ground

plane. The permittivity is taken to be constant at the plane

on which the conductor plate lies and it decays exponen-

tially toward the ground plane. The variation is smaller as

the perrnittivity at the ground plane increases. The contin-
uously varying permittivity has been simulated by using N

dielectric layers of equal thickness and constant permittiv- 1

it y. The value of the permittivit y in each layer follows the

exponential variation proposed (N= 20 was considered to

be enough to obtain convergence in the capacitance value).

According to the figure, the effect of inhomogeneity is

1

o lr/4 if/2

Tiltingangle

Fig. 5. Normalized capacitance of elliptic microstrip disk on anisotropic
PTFE substrate (a/H= 3; b/H = 0.9; c; = 2.89; c; = 2.45; c: =
2.95) as a function of the tilting angle between the principal axes of

permittivity tensor and the coordinate axes defined in Fig. l(a) and (b).
Tilts in the three coordinate planes are studied.

o
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aY) ‘H’ x

.L * I I
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~ig. 6. lQo rmalized capacitance of elliptic microstrip disk printed on a
substrate with a variable permittivity in the Y direction. The capaci-
tance is plotted versus the value of the permittivity at the ground plane

C(Y = 0). The value of the permittivity is taken to be constant at the
interface on which conductors lie c( y = H) =10 and it decays expo-
nentially toward the ground plane. Solid lines stand for zero eccentric-
ity and dashed lines stand for nonzero eccentricity.
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stronger for larger plates, in which the energy density is

more confined in the region under the conductor plates.

V. CONCLUSIONS

An algorithm is developed for calculating the capaci-

tance of an elliptic conductor patch embedded in a strati-

fied substrate composed of lossless dielectric layers with

arbitrary anisotropy. A variational expression in the spec-

tral domain is used to compute a lower bound for the

patch capacitance. Both the choice of an adequate spatial

coordinate system and the use of a variable transformation

in the two-dimensional Fourier space make it possible to

account for the edge singularity in the approximation of

the charge density on the elliptic plate. Because to this, the

results obtained are quite accurate. A detailed analytical

study of the integrals arising in the calculation of the

capacitance makes it possible to increase the convergence

speed of the algorithm when it is implemented in a com-

puter program. Comparison with available data in the

literature shows very good agreement in the limit of van-

ishing eccentricity. Original design graphs are presented

with special emphasis on the use of inhomogeneous and

anisotropic substrates.

APPENDIX

When the charge density transforms calculated in (14)

and (16) are introduced in (11), the numerical evaluation

of the infinite integrals with respect to the variable is slow

since the integrands cQnverge as 0( y I – 2)) for y -+ m. To

accelerate convergence, we have made use of the asymp-

totic properties of the spectral Green’s function G(y, 0).

As was seen in (4a), G(Y90) depends on the variable

through hyperbolic functions. These functions exponen-

tially reach their asymptotic limit for small values of their

arguments. In fact, the asymptotic limit of G( y, O) for the

configuration shown in Fig. l(a) is reached when

rein, =l,..., ~(y~, ) = 5 and it turns out to be

G(y, fl)l~, = {EOy[(@2,&~-(&~)2COS2~

‘(~y2, ~~}q,~-(~j~~)2)( u/b)2sin2~

+2(@@:2,M – f~2, Mc;3, M )

.(a/b)sini2cosL? ]”2

[+ toy (Q2, M+l~fi, M+l - (6~, M+J2) COS2L?

‘(6!2, M+ IC}3, M+1 -(%M+J2)

.(a/b)2sin2fl

+2(% T, M+1C:2,M+1 — @2, M+l~Y3, M+l )

-(a/b) sinflcosfl]l’2)-’. (Al)

This asymptotic expression provides the spectral Green’s

function for an elliptic plate placed between two semi-
infinite media with permittivity tensors ~~ and {(~+ 1,.

Bearing in mind that G(y, fl) quickly reaches its asymp-

totic limit, we can rearrange the right-hand side of expres-

sion (11) in the following way:

–yG(y, Q)la,]@,(y)~j(y)dydfil

+~,,f27Y@Y,~)]a,~~] (i,.j=o.>p) (AL)
o

where

~1, =JmF1(Y)P,(Y)~Y. (A3)
o

The first infinite integral appearing in (A2) can be

efficiently computed since the integrand decays exponen-

tially. Concerning the second infinite integral, which is

defined in (A3), we were able to obtain its value in closed

form for the trial functions defined in Section III. So, for

option 1,

16~ab2
Aoo=—

3
(A4)

and for option 2,

(z, J= O,..., P) (A5)

where

1~~ =
Jo (n+l/2)(x)J-(J2 +l/2)’

‘J

For the case n > m >0, we can wr

x) J(m+l/2) (x)

m>– 1). (A6)

te

Ifiw= 1jlP~(2t2– l) P~(2t2–1) dt (A7)
TT()

where Parseval’s identity and [17, eq. (6.672.2)] have been

applied. Pn(x ) are Legendre polynomials. By using the
variable transformation u = 1 – 2t 2 and [17, eq. (7.232)],

(A7) can be rewritten as

1~~ =
(-l)n+m

J

+lpn(~)pw(~) ~t,

2fiT -1 (1-u) l/2

_ (-l)”+m

(

11 31
—

(2n+l)r
~F3 –m, m+l, ;,~; l,n+j, z–n; l

)

2(–l)n+m
——

.: ~m+j)![(2j)]’(n +j+l)![2(n -j)]!

~=o (m–j)![(j)!] 4(n–j)![2(n+j+ l)]! “

(AS)

For the rest of the values of n and m, the following

relations have to be used:

I,~n = 1~~ (A9a)

I m-l = 1~0 (m>–l). (A9b)

As can be derived from (4b), the integrals with respect

to the variable in (A2) have only to be performed between
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0 and n, owing to the symmetrical dependence of the W]

spectral Green’s function on the a and ~ variables. When

the condition cfic;2 – c&:3= O is fulfilled for each dielec- [14]

tric in the multilayered substrates, it is sufficient to inte-

grate between O and T/2.
[15]
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