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Capacitance Computation of Elliptic Microstrip
Disks 1n Biaxial Anisotropic
Multilayered Substrates

RAFAEL R. BOIX AND MANUEL HORNO, MEMBER, IEEE

Abstract —Variational technique in the spectral domain are used to
develop an algorithm which calculates a lower bound of the capacitance of
a conductor elliptic disk embedded in a lossless multilayered substrate with
arbitrary dielectric anisotropy. This algorithm is intended to be a useful
tool for lumped element design in MMIC applications. The calculation
method is shown to be general, quick, and accurate when implemented in a
computer program. Numerical results are given to demonstrate the effi-
ciency of the algorithm.

I. INTRODUCTION

UMPED ELEMENT circuits offer an attractive alter-

native to distributed circuits in MMIC’s. Lumped
elements are of relatively small size and thanks to this,
they make it possible to reduce the semiconductor area
wasted in passive circuits. For design purposes, it is neces-
sary to develop computer programs to characterize such
type of elements [1].

Microstrip patches with an arbitrary shape are com-
monly used as lumped elements. Many papers have been
published dealing with the calculation of the capacitance
of such patches. Special attention has been paid to the
analysis of the circular patch. A complete bibliographical
report on the calculation of the capacitance of a circular
conductor plate in homogeneous and inhomogeneous me-
dia can be found in [2]. A modified version of the circular
patch is the elliptic patch. It appears that very little work
has been done on the determination of the capacitance of
elliptic microstrip patches including fringing field effects.
Besides, the only capacitance data for elliptic patches we
have been able to find are not very reliable [3]. This will be
proved in this paper.

The capacitance values of elliptic microstrip patches can
be used in the analysis of elliptic microstrip resonators to
account for fringe effects. By means of these capacitance
values, it is possible to derive effective dimensions and
effective permittivities, which can be included in a modi-
fied cavity model to obtain the resonance frequencies [3],
[4]. This model is much less time-consuming in a computer
than a full-wave analysis [5]. The elliptic resonator pre-
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sents some advantages over the simpler circular resonator.
For instance, it can be used in the design of parametric
amplifiers and harmonic multipliers by varying the eccen-
tricity as a degree of freedom [6]. Also, no mode splitting
due to slight deformations occurs in the elliptic resonator
and the field configuration is fixed with respect to the
axes [3].

The modified cavity model can also be used to analyze
elliptical microstrip antennas. Circular and rectangular
microstrip antennas can be adapted to provide circular
polarization, but multiple feeds are needed. However, by
using a slightly elliptical radiator, it is possible to obtain
circular polarization while retaining a simple feed. This
fact has been proved by means of analytical work [7] and
experimental measurements [8].

All the results reported on the calculation of the capaci-
tance of circular and elliptic microstrip disks deal with the
conventional microstrip configuration in which the con-
ductor plate is printed on a single isotropic dielectric [2],
[3]. In this paper, we provide an algorithm to determine
the capacitance of an elliptic conductor plate embedded in
a multilayered anisotropic substrate. Multilayered analysis
allows the study of configurations in which several dielec-
tric layers are involved (e.g., suspended, inverted, and
sandwiched configurations) and it also allows the simula-
tion of dielectrics with a continuous permittivity variation
in one direction. The effect of anisotropy is also taken into
account because a variety of practical substrates are
anisotropic and serious errors may be incurred when
anisotropy is neglected [9]. Variational techniques in the
spectral domain are employed in an adequate way to
compute the value of the capacitance of the elliptic plate.
Once implemented in a computer program, the algorithm
developed turns out to be general, accurate, and quick.

II.  VARIATIONAL FORMULATION FOR THE
CAPACITANCE OF THE ErLLIPTIC DISK

In Fig. 1(a), we have drawn the cross section of a
stratified medium composed of N layers of lossless
anisotropic dielectric materials. An infinitely thin and loss-
less elliptic conductor plate lies between the Mth and
(M +T)th dielectric layers. The dimensions of the ellipse
and its orientation referred to the coordinate system cho-
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Fig. 1. (a) Multilayered substrate with biaxial dielectric anisotropy.
(b) Elliptic conductor patch placed at the Mth interface of the multi-
layered substrate shown in (a).

sen are given in Fig. 1(b). The eccentricity of the ellipse is
given by

Nn1/2
e=(1—(b/a)’)"". (1)

Dielectric materials in the multilayered configuration
are allowed to present biaxial anisotropy, and their permit-
tivity tensors can be expressed as

* * %
€11, €12, €13,
- * * * .
€, =€l €2, €2, €3 (i=1,---,N). (2)
% * %
€13, €23, €33,

The six independent parameters of the permittivity ten-
sor can be expressed in terms of its eigenvalues €5, €,
and €, and the Euler angles ¢,, 6,, and ¢,, which describe
the position of the tensor principal axes referred to the
Cartesian coordinate axes shown in Fig. 1(a) and (b) [10].
Boundary interfaces i=0 and /=N are independently
allowed to be any one of three different possibilities:
electric walls, magnetic walls, or open boundaries extend-
ing to infinity.

When a two-dimensional Fourier transform is carried
out from the spatial variables X—Z to the spectral vari-
ables a—f, the electric energy associated with the structure

shown in Fig. 1(a) can be expressed as [10]

1 ro ptoo
V=53 [ GlaB)lb(a.B) dadp. (3)

In the above expression, §(a, 8) stands for the two-dimen-
sional Fourier transform of the charge density on the
elliptic conductor plate and G(a, B) is the spectral Green’s
function. For a multilayered dielectric substrate with biax-
ial anisotropy, the value of G(a, B) is obtained by means
of a recurrent algorithm proposed in [10]. The spectral
Green’s function dependence on the Fourier variables «
and B is expressed in terms of hyperbolic functions as is
written below:

G(a,B) =G(F(a,B)coth(H,F,(a,B)), F(a,B)
-cosch (H,F,(a, B))) (in general, i =0,---, N+1)
(4a)

where
E(av 18) = (1/632,1)[(652,161#;,1 - (612,1)2) az
+(€;2,1€?T3,1 _(fiks,i)z)ﬂz

F2efs e eheh )aB] . (4b)

Owing to Thomson’s theorem, the right-hand side of (3)
provides an upper bound for the electric energy if an
approximated expression is used for the transformed charge
density g(a, 8) on the elliptic plate. This means that the
charge density needs to be previously estimated in the
spatial domain to obtain a stationary value of U.

At this point, it is necessary to choose an adequate
coordinate system to express the charge density on the
plate. Considering the geometry of the problem, the natu-
ral coordinates to be used are the orthogonal elliptic
coordinates (§,m, y) defined in [11]. In general, for an
elliptic plate embedded in an arbitrary multilayered
anisotropic substrate, the charge density depends on both
variables £ and 1. When the dielectrics present uniaxial
anisotropy and their optical axis are aligned with the Y
axis defined in Fig. 1(a) (ie., € ;=€ , and €%, = ¢, =
€%, ;=0), the electrostatic potential for the problem and
the charge density on the plate no longer depend on the ¢
variable. Nevertheless, the use of the variables £ and 7 to
approximate the charge density is unsuitable when a trans-
formation to the two-dimensional Fourier space is at-
tempted to obtain g(«, 8). To avoid this, adifferent choice
for the coordinate system has been made. The coordinates
employed are related to the natural coordinates used in the
problem of the circular plate (limiting case of an elliptic
plate with vanishing eccentricity), which are cylindrical
coordinates (r, ¢, y) {12]. By analogy with cylindrical coor-
dinates (r, ¢, y), we define the coordinate system (r’, ¢', y)
for the more general problem of the elliptic plate with
nonvanishing eccentricity as

x=r'cos¢’
z=(b/a)r'sing’. (5)

The points on the elliptic plate are obtained by varying

the coordinates defined in (5) through the range 0 < r’' < a,
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0<¢'<2w, y=YM H. This coordinate system is not
orthogonal unless b= g, and in this latter case, it repre-
sents the cylindrical coordinate system. In our analysis, we
use the coordinates defined in (5) and we assume that the
charge density on the elliptic plate depends only on r’. As
will be seen below, this choice makes it possible to obtain
the two-dimensional Fourier transform of the charge den-
sity in a way which is suitable for calculating the electric
energy via expression (3). The assumption p = p(r’) is only
true for the case of a circular plate embedded in a multi-
layered anisotropic substrate with circular symmetry;i.e.,
dielectrics must have uniaxial anisotropy and the optical
axes must be aligned and perpendicular to the interfaces.
For the more general case of an elliptic plate embedded in
an arbitrary anisotropic substrate, the assumption is not
valid since the charge density on the plate also depends on
the ¢’ coordinate. However, the effects of complex
anisotropy and nonvanishing eccentricity can be regarded
as perturbations of the simple case of a circular plate on
an aligned uniaxial substrate. Considering this, the men-
tioned assumption can be interpreted as a first-order ap-
proximation for the real charge density. The smaller the
eccentricity and the weaker the anisotropy, the better the
approximation will be. Also, it should be taken into ac-
count that if some error is made in the approximation of
the charge density, this error is reduced when the electric
energy of the structure is calculated, owing to the varia-
tional features of expression (3).

Besides the spatial coordinate transformation proposed
in (5), we also substitute the variables @ and B8 in the
two-dimensional transformed space by a pair of new vari-
ables, vy and @, given by

a=ycos{}
B=(a/b)ysin®. (6)

When the variable transformations shown in (5) and (6)
are introduced in the definition of the two-dimensional
Fourier transform of the charge density on the elliptic
plate, this can be written as

2Wb a
py)=— /O Jo(yr")o(r')r'dr'. (7)

As a result of the assumption p=p(#’), the charge
density transform depends only on the y variable in the
transformed space. It can be noticed that the integral
appearing in (7) stands for the zeroth-order Hankel trans-
form of the function p(r’) [12]. When the new variables
defined in (6) are introduced in (3), the electric energy can
be rewritten as

a Qg O

V=g [ [ 63 Pvdvag.  (®)
In this expression §(y) is a real quantity owing to the
definition given in (7). The spectral Green’s function gen-
erally depends on the variables y and ©, as can be derived
when (6) is introduced in (4b). When the problem to be
solved presents circular symmetry, the spectral Green’s
function no longer depends on € and only a single integral
has to be carried out in (8).

The charge density approximation on the plate is opti-
mized by using trial function expansions. Therefore, the
charge density can be written as

14
p(r) =X ap,(r). (9)
1=0

When (9) is introduced in (7) and the result is substi-
tuted in (8), the energy turns out to be a function of the
unknown coefficients a,. These coefficients are obtained
by minimizing the electric energy, being the total charge
conditioned to be a constant on the plate. This constant is
chosen to be equal to 1 without loss of generality. To solve
the isoperimetric problem that arises, Lagrange’s multipli-
ers method is applied. As a result of these calculations, a
set of linear equations is obtained:

P
) al, +AQ, =0
(j=0,-,p)  (10)
> a9, =1

in which the coefficients I; are given by

f(f” [ “G(v.9)5,(v)5, (v)ydvdQ

a

Yo 8a%b

(i,j=0,---,p). (11)

The coefficients Q, = ,(y = 0) stand for the contribution
of each trial function to the total charge on the plate and
the unknown “A” is the Lagrange’s multiplier. By using
the system of equations (10), the electric energy can be
rewritten in a very simple way, namely,
por
U=}, Za,ajl‘,j=—}\. (12)

1=0;=0

Since the total charge on the plate is taken to be equal to
1, the capacitance will be given by C =1/2U. Therefore,
the charge density approximation on the plate provides an
upper bound for the exact value of the electric energy, and
it also provides a lower bound for the exact value of the
capacitance. The use of Lagrange’s multipliers method
ensures the calculation of a lower bound for the capaci-
tance. This point is not considered by Leong et al. in their
analysis [13], and although the method employed by them
is variational, no lower bound for the capacitance is ob-
tained (see Maxwell’s distribution results in [13, table 1].

III. TrRIAL FUNCTIONS FOR THE CHARGE DENSITY

Option 1
As a first approximation, a uniform charge distribution
is assumed on the elliptic plate, namely

o(r) = {5 (13)

This approximation was the one employed by Sharma
et al. in [3]. In fact, when the charge distribution shown in
(13) is introduced in our formulation, the capacitance

r<a
r'>a.
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TABLE I
NorMaLizED CAPACITANCE CH /meq€, a> OF MICROSTRIP CIRCULAR DISK AS A FUNCTION OF THE RATIO DISK
RADIUS /SUBSTRATE THICKNESS (2 /H ) FOR €, =1 AND ¢, = 2.65

Normal 1zed capacitance CH/(n€ € &)
ro
a/H Ref. {16} Variational Ref. [16] Variational Number of
Ref. This Ref. This Trial
[k $) method [1& method Functions
” € =1 € =2.85
.. a | a
G.1 —— 26.3006  26. 3008 -——- 18,2310 18.2310 2
c.2 ———— 13.592¢  13.5920 ———— 9.4866 9.4866 2
1.0 3.5346 3,.58345 3.5346 2.61e2 2.6124 2.8122 3
2.0 2.3183 2.3179 2.3183 1.8100 1.8094 1.8100 3
10.0 1.3180 1.3159 t.3180 1.1809 1.4780C 1.1809 4
2¢.0 1.1756 ———= 1.1756 1.0969 ——— 1.0969 4
100.0 1,0421 — 1.0440 1.0210 e 1.0228 &

The results are compared with those provided in [13] and [16]. Option 2 is used for the calculation of the
capacitance. The number of trial functions used to ensure convergence in each case is given.

expression obtained for an elliptic patch on a single
isotropic substrate is mathematically equivalent to that
reported in [3]; therefore, it should yield the same results.
For the case of the circular microstrip patch, it has been
reported that the constant charge density approximation
provides reliable results only for high values of the ratio
disk radius/substrate thickness [13], [14]. For practical
values of this ratio, the range of error produced by this
approximation varies between 4 and 8 percent [13]. By
analogy, the range of error arising in the case of an elliptic
patch must be similar. This will be ascertained in the
results section. When (7) is applied, the transform of the
function appearing in (13) turns out to be

“loN Ji(va)
p(y)=2ab S

(14)

This resuit allows us to recognize the infinite series
appearing in {3, eq. (13)] and evaluate those series by using
the simple numerical expressions given in [15] for Bessel
functions.

Option 2
In this case, we employ an expansion of the form
2 T, (r'/a)
e(r)= Y a———55;
(=0 (1—(r'/a) )
where T,,(x) are Chebyshev polynomials of the first kind.

As can be seen, each term in the expansion accounts for
the charge density singularity at the edge. This sort of trial

(15)

functions has been successfully employed in the analysis of
microstrip rectangular patches [10]. The first term in the
expansion represents Maxwell’s charge distribution, which
has also been used in the calculation of the capacitance of
a circular microstrip plate [12]-[14]. In that case, Maxwell’s
distribution is reported to provide accurate results for
small values of the disk radius/substrate thickness ratio. It
will be seen below that for larger values of this ratio,
higher order terms in the expansion given in (15) make it
possible to spread the validity range of the one term
approximation. In fact, a small number of trial functions
in (15) yield accurate results for our purposes in the range
of practical dimensions for both circular and elliptic
patches. The transform of the functions appearing in (15)
is given by

a2ba

. ya ya
P;(Y) = _2— [‘](1—1/2)(7)‘]-—(1'—1/2)(7)

Ya Ya )
+J(z+1/2)(7)‘]—(1+l/2)(—2—):| (’=0"",P)- (16)

Bessel functions of integer order plus one half appear in
(16). Functions of this type are expressed in terms of
simple trigonometric functions that are quickly computed.
The numerical evaluation of the integrals appearing in (11)
for the trial functions chosen in options 1 and 2 has been
accelerated by means of an analytical treatment. This is
explained in detail in the Appendix.
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Fig. 2. Normalized capacitance of a microstrip elliptic disk as a func-
tion of eccentricity for different values of the major axis/substrate
thickness (a /H) ratio and for different permittivities. Solid lines are
used for option 2 results and dashed lines are used for option 1. The
asterisks correspond to the results given in [3, fig. 8].

IV. RESULTS

Two programs were implemented for the calculation of
the capacitance of circular and elliptic plates in multilay-
ered and anisotropic substrates. One of them works on
structures showing circular symmetry, in which numerical
integrals with respect to the & variable in (11) do not have
to be performed. The other program can treat nonsymmet-
rical structures involving elliptic plates on arbitrary
anisotropic substrates.

The accuracy of the algorithm was first checked by
comparing our results with very exact existing data for the
capacitance of circular microstrip disks in vacuum and
circular disks printed on a single dielectric slab [13], [16].
Values are presented in Table I for a wide range of
variation of the disk radius/substrate thickness ratio. It
can be seen that as this ratio increases, the number of trial
functions required in option 2 to obtain a precise result
also increases. For large values of the ratio mentioned, the
variational algorithm presented in [13] does not seem to be
as accurate as the one presented here.

In Fig. 2, the normalized capacitance of an elliptic
microstrip disk is plotted versus eccentricity. The results
obtained with the two options given in Section III for the
charge density approximation are shown. It is clear from
the figure that the capacitance values calculated with op-
tion 2 enhance considerably those obtained with option 1.
The difference between the data corresponding to each
option varies between 4 and 9 percent. This difference
becomes higher as both the plate surface/substrate thick-
ness ratio and the substrate permittivity decrease. The
asterisks in Fig. 2 stand for the results obtained in [3, Fig.
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Fig. 3. Capacitance of an elliptic microstrip disk with shielding upper
ground plane (normalized to the capacitance obtained by ignoring the
fringing fields) as a function of the relative position of the plane. Solid
lines stand for zero eccentricity and dashed lines stand for nonzero
eccentricity (b/a = 0.3).

8] by Sharma er al. As was stated in Section III, these
authors employ a uniform charge density distribution
function on the elliptic plate in their formulation; there-
fore, their results should coincide with those presented
here for option 1. However, serious discrepancies are no-
ticed. To check the validity of both groups of results, a
comparison was made with the results reported in [12] and
[13] in the limit of vanishing eccentricity, keeping the
assumption of constant charge distribution on the plates.
We found that our results agree closely with the mentioned
data, whereas Sharma’s results provide errors ranging from
5 to 25 percent, which increase as the major axis/substrate
thickness ratio increases. Looking at Fig. 2, these error
percentages seem to remain for nonvanishing eccentrici-
ties. The formulation presented in [3] is similar to that
presented here for option 1, but the numerical treatment is
much more cumbersome, since it requires carrying out two
iterated integrals over an infinite interval, and the function
to be integrated is calculated by evaluating a slowly con-
vergent series. Owing to this, we think that serious numeri-
cal errors were made to generate the results given in [3],
and these results should not be considered to be reliable.

In Fig. 3, the effect of the shielding upper ground plane
on the capacitance of microstrip circular and elliptic disks
is analyzed. As can be seen, this effect is stronger as the
ratio plate surface/substrate thickness decreases and as
the substrate permittivity decreases.

In Fig. 4, even- and odd-mode capacitances of broadside
coupled microstrip circular and elliptic disks on anisotropic
substrates are plotted as a function of the distance between
the conductor plates. From the figure, it can be derived
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Fig. 4. Modal capacitances of broadside coupled elliptic and circular
microstrip disks versus the relative thickness of the substrate (a/c=0.1
is used in all the graphs). Solid lines stand for circular disks on
sapphire substrate (e =¢}=94; e =11.6; e} =€ =€} =0).
Dashed lines stand for elliptic disks on P.B.N. substrate (e} = ¢} =
5.12; €% =34; e =¢fs =5 =0).

that for a given distance between plates, the coupling is
higher for a higher plate surface and for higher substrate
permittivity.

In Fig. 5, the effect of biaxial anisotropy on the capaci-
tance of an elliptic microstrip patch is studied. Normalized
capacitance is plotted versus the angles between the princi-
pal axes of the permittivity tensor and the coordinate axes.
The principal axes of the permittivity tensor are separately
allowed to be tilted in the three coordinate plates, this tilt
being expressed in terms of Euler’s angles. The effect of
tilting is very slight in the X—Z plane since anisotropic
PTFE presents little anisotropy in this plane. However, it
is important in the X-Y and Y-Z planes, in which the
normalized capacitance changes about 20 percent when the
tilting angle varies from 0 to 7 /2.

In Fig. 6 is shown the normalized capacitance of an
elliptic microstrip disk printed on an inhomogeneous di-
electric with a varying permittivity in the Y direction as a
function of the value of the permittivity at the ground
plane. The permittivity is taken to be constant at the plane
on which the conductor plate lies and it decays exponen-
tially toward the ground plane. The variation is smaller as
the permittivity at the ground plane increases. The contin-
uously varying permittivity has been simulated by using ¥
dielectric layers of equal thickness and constant permittiv-
ity. The value of the permittivity in each layer follows the
exponential variation proposed (N = 20 was considered to
be enough to obtain convergence in the capacitance value).
According to the figure, the effect of inhomogeneity is

35
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Fig. 5. Normalized capacitance of elliptic microstrip disk on anisotropic
PTFE substrate (a/H=3; b/H=09; €} =289; e} =245 ¢¥=
2.95) as a function of the tilting angle between the principal axes of
permittivity tensor and the coordinate axes defined in Fig. 1(a) and (b).
Tilts in the three coordinate planes are studied.

CH/meqab

¢{Y=0)

Fig. 6. Normalized capacitance of elliptic microstrip disk printed on a
substrate with a variable permittivity in the Y direction. The capaci-
tance is plotted versus the value of the permittivity at the ground plane
€(y=0). The value of the permittivity is taken to be constant at the
interface on which conductors lic €(y = H) =10 and it decays expo-
nentially toward the ground plane. Solid lines stand for zero eccentric-
ity and dashed lines stand for nonzero eccentricity.
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stronger for larger plates, in which the energy density is
more confined in the region under the conductor plates.

V. CONCLUSIONS

An algorithm is developed for calculating the capaci-
tance of an elliptic conductor patch embedded in a strati-
fied substrate composed of lossless dielectric layers with
arbitrary anisotropy. A variational expression in the spec-
tral domain is used to compute a lower bound for the
patch capacitance. Both the choice of an adequate spatial
coordinate system and the use of a variable transformation
in the two-dimensional Fourier space make it possible to
account for the edge singularity in the approximation of
the charge density on the elliptic plate. Because to this, the
results obtained are quite accurate. A detailed analytical
study of the integrals arising in the calculation of the
capacitance makes it possible to increase the convergence
speed of the algorithm when it is implemented in a com-
puter program. Comparison with available data in the
literature shows very good agreement in the limit of van-
ishing eccentricity. Original design graphs are presented
with special emphasis on the use of inhomogeneous and
anisotropic substrates.

APPENDIX

When the charge density transforms calculated in (14)
and (16) are introduced in (11), the numerical evaluation
of the infinite integrals with respect to the variable is slow
since the integrands converge as O(y(~?) for y = c0. To
accelerate convergence, we have made use of the asymp-
totic properties of the spectral Green’s function G(y, Q).
As was seen in (4a), G(v,{) depends on the variable
through hyperbolic functions. These functions exponen-
tially reach their asymptotic limit for small values of their
arguments. In fact, the asymptotic limit of G(vy, Q) for the
configuration shown in Fig. 1(a) is reached when
min,_, .. y(vH,) =5 and it turns out to be

G(y,Q)L” = {507[(655. MELL, M _(51*2,M)200529

+ (6;2,M€;3,M - (6;3.M)2)(a/b)2 sin” @
+2(ef, wed v — €5 m€d, )
-(a/b)sinﬂcos(l]l/2

+egy [(ffz, M1, M1 (51*2.M+1)2) cos® £
+ (fikz, MA1€33, M1 (fiks, M+1)2)
(a/b)’sin*Q

+ 2(‘1’3, MA1€32, M1 €D, M+1€§<3,M+1)

. 1/2y —1
-(a/b)smSZcosSZ] /} . (A1)
This asymptotic expression provides the spectral Green’s
function for an elliptic plate placed between two semi-
infinite media with permittivity tensors €,, and €.y,
Bearing in mind that G(y,{) quickly reaches its asymp-
totic limit, we can rearrange the right-hand side of expres-

sion (11) in the following way:

T, = é;azz{fozwj;w[m(y.ﬂ)
—vG (v, )], ]5.(v)5,(v) dydQ
4, OZWYG(Y,Q)ImdQ} (i j=0. - p) (A2)

where

A,,=f0wﬁ,(v)5,(v)dv-

The first infinite integral appearing in (A2) can be
efficiently computed since the integrand decays exponen-
tially. Concerning the second infinite integral, which is
defined in (A3), we were able to obtain its value in closed
form for the trial functions defined in Section III. So, for
option 1,

(A3)

167wab?®
Aoy = 3 (A4)
and for option 2,
a*b’%a
Azj= 2 [Iz—l,j—1+ll“1~l+11>/_1+IU]
(i.j=0,---.,p) (AS)
where
Inmz./(; J(n+1/2)(X)J—(n+1/2)(x)‘](m+l/2)(x)
T maryy(x)dx (n,m>-1). (A6)
For the case n > m > 0, we can write
1
Inm=—an(2t2—1)Pm(2t2~—1) di (A7)
7 Y0

where Parseval’s identity and [17, eq. (6.672.2)] have been
applied. P,(x) are Legendre polynomials. By using the
variable transformation u=1-—2¢2 and [17, eq. (7.232)],
(A7) can be rewritten as

_ (”1)n+mf+lpn(“)Pm(”)

Inm_ 2\/577 . (1—u)1/2 dll
(-n)"+" 11 31
=m‘l@(—m,m-f-l,a,z;l,n-F5,5—71;1
—2(_1)n+m
o (mE DHEHP(n+ j+1)12(n = )]
J=o (m= NN (= )2(n+ j+ D]
(A8)

For the rest of the values of n and m, the following
relations have to be used:

Imn = Inm
I, ,=1

# mo

(A9a)

(m>=-1). (A9b)
As can be derived from (4b), the integrals with respect
to the variable in (A2) have only to be performed between
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0 and #, owing to the symmetrical dependence of the
spectral Green’s function on the & and B variables. When
the condition € — efied; = 0 is fulfilled for each dielec-
tric in the multilayered substrates, it is sufficient to inte-
grate between 0 and 7/2. '
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